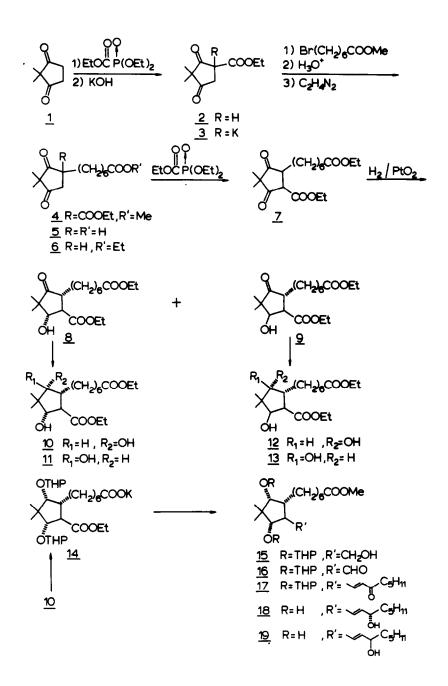
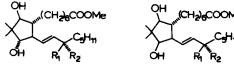
```
SYNTHESIS OF 10,10-DIMETHYLPROSTAGLANDINS<sup>1</sup>
```


O.G. Plantema, H. de Koning^{*} and H.O. Huisman Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 1 July 1975; accepted for publication 10 July 1975) We wish to report the total synthesis of the 10,10-dimethyl-PGF_{1a}, PGF_{1b} and 11-epi-PGF_{1b} methylesters and their C_{15} -epimers, by a route in which all isomers are obtained from a common intermediate.

Reaction of 2,2-dimethyl-1,3-cyclopentanedione $\underline{1}^2$ with ethyl diethoxyphosphinylformate³ and NaH afforded β -keto ester <u>2</u> [bp. 69-71°/0.05 mm; ir 1750, 1725, 1660 and 1620; m/e 198 (M)]⁴. Treatment with KOH in aqueous ethanol⁵ produced potassium salt <u>3</u> [ir 1730, 1650]. Reaction of <u>3</u> with methyl 7-bromoheptanoate in dry DMSO provided diester <u>4</u> [ir 1740, 1725; nmr 3.30 (d,J = 19, ring CHCO), 2.70 (d,J = 19, ring CHCO)] besides some O-alkylated product [ir 1740, 1710 and 1620; nmr 3.26 (s, C = CCH₂CO)]. Treatment of <u>4</u> with boiling 10% sulfuric acid for 16 h gave carboxylic acid <u>5</u> [mp. 45-46°; ir 3600-2500, 1760 and 1720; nmr 9.0 (s, COOH), 2.25 (t, J = 7, CH₂COOH, 1.13 (s, CH₃), 1.10 (s, CH₃)], which was converted to ethyl ester <u>6</u> [bp. 140-144°/ 0.01 mm; ir 1755, 1720; m/e 282 (M)] with diazoethane. Reaction of <u>6</u> with ethyl diethoxyphosphinylformate and NaH yielded β -keto ester <u>7</u> [30% from <u>1</u>; bp. 160-164°/0.01 mm; ir 1740, 1720, 1660 and 1620; m/e 354 (M)].

Catalytic hydrogenation of $\underline{7}$ over PtO_2 in ethanol produced a mixture of alcohols $\underline{8}$ and $\underline{9}$, separable by column chromatography. These compounds are assumed to possess a relative <u>trans</u> configuration at C_8^6 and C_{12} because of the easily enolisable β -keto ester⁷ in $\underline{7}$. The relative configuration at C_{11} and C_{12} was confirmed by ir dilution experiments^{8,9}: only <u>9</u> showed a concentration-independent behaviour in the OH-region. Reduction of <u>8</u> with sodium borohydride in ethanol gave <u>10</u> and <u>11</u>, while <u>12</u> and <u>13</u>¹⁰ were obtained from <u>9</u>. The diols


2945

could be separated by column chromatography. Reaction of both <u>cis</u>-1,3-diols <u>10</u> and <u>13</u> with p-nitrobenzaldehyde and a catalytic amount of p-toluenesulfonic acid, forming cyclic benzylidene derivatives, established the C_9-C_{11} configuration ^{11,12}.

Conversion of diol 10 to the bis-tetrahydropyranyl ether followed by selective hydrolysis¹³ of the less hindered ester function with one equivalent of potassium hydroxide in aqueous ethanol gave the mono ester 14. Reduction of the ester function in $\underline{14}$ with lithium borohydride in diglyme at 100[°] and subsequent methylation of the carboxylate with methyl iodide in HMPT¹⁴ afforded alcohol 15 [ir 3500, 1720; nmr 3.64 (s, $COOCH_3$), 2.28 (t, J = 7, CH₂COOMe)]. Moffatt oxidation of <u>15</u> with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate⁹ gave aldehyde 16. The remaining steps in the synthesis were completed by established procedures 15. Reaction with the sodium derivative of dimethyl 2-oxoheptylphosphonate and subsequent reduction of the resulting enone 17 [ir 1720, 1690, 1660 and 1620; nmr 6.75 $(m, \underline{H}_{1,3})$, 6.13 $(m, \underline{H}_{1,4})$] with zinc borohydride, followed by hydrolysis of the tetrahydropyranyl ethers with acetic acid in aqueous tetrahydrofuran gave a mixture of C_{15} -epimers <u>18</u> [14% from <u>10</u>; $R_f = 0.31$ (SiO₂, ethyl acetate); m/e 380 (M-18)] and <u>19</u> [14% from <u>10</u>; $R_f = 0.43$; m/e 380] which were separated by column chromatography. Compound 18 is assumed to possess "natural" stereochemistry at C_{15} by analogy with the chromatographic behaviour of esters of the natural prostaglandins.

The C_{11} and C_9 , C_{11} epimeric prostaglandins were prepared <u>via</u> the same route starting from <u>11</u> and <u>13</u>: <u>20</u> [13% from <u>11</u>; $R_f = 0.26$; m/e 380], <u>21</u> [13% from <u>11</u>; $R_f = 0.37$; m/e 380], <u>22</u> [8% from <u>13</u>; $R_f = 0.32$; mp. 71-72[°]; m/e 380], <u>23</u> [7% from <u>13</u>; $R_f = 0.37$; mp. 90-91[°]; m/e 380] ¹⁰.

<u>20</u> R₁=H ,R₂=OH <u>21</u> R₁=OH,R₂=H <u>22</u> R₁=H , R₂=OH <u>23</u> R₁=OH, R₂=H

REFERENCES:

- 1. Taken in part from the forthcoming thesis of O.G. Plantema.
- 2. W.C. Agosta, A.B. Smith, J.Org.Chem., 35, 3856 (1970).
- 3. I. Shahak, Tetrahedron Lett., 2201 (1966).
- 4. All compounds are racemic. Satisfactory elemental analysis were obtained. ¹H-NMR spectra (chemical shifts are reported in ppm on the δ -scale) were obtained on a Varian HA 100 spectrometer in deutero chloroform containing tetramethylsilane as internal reference. IR spectra (cm⁻¹) were obtained in chloroform. Mass spectra were obtained with an AEI MS-9 spectrometer.
- R. Mayer in "Neuere Methoden der Präparativen Organischen Chemie", Bnd.II,
 Ed. W. Foerst, Verlag Chemie, Weinheim, 1960, p. 69.
- 6. Prostaglandin numbering.
- 7. K. Kojima, K. Sakai, Tetrahedron Lett., 3337 (1972).
- 8. J. Castells, J. Palau, J.Chem.Soc., 4938 (1964).
- 9. N. Finch, L. Della Vecchia, J.J. Fitt, R. Stephani, I. Vlattas, <u>J.Org.</u> <u>Chem.</u>, <u>38</u>, 4412 (1973).
- 10. ¹H- and ¹³C-NMR Spectra of <u>8-13</u> and <u>18-23</u> were consistent with the assigned structures and will be published elsewhere.
- 11. P.F. Beal, J.C. Babcock, F.H. Lincoln in "Prostaglandins, Proceedings of the 2nd Nobel Symposium", Stockholm 1966, Ed.S. Bergström and B. Samuelsson, Almqvist and Wiksell, Stockholm, 1967.
- 12. D. van Haver, D. Tavernier, M. Anteunis, M. Vandewalle, <u>Tetrahedron</u>, <u>30</u>, 105 (1974).
- 13. K. Kojima, K. Sakai, Tetrahedron Lett., 3333 (1972).
- 14. J.E. Shaw, D.C. Kunerth, J.J. Sherry, Tetrahedron Lett., 689 (1973).
- 15. E.J. Corey, N.M. Weinshenker, T.K. Schaaf, W. Huber, J.Amer.Chem.Soc., 91, 5675 (1969).